【写在8月25日20:53,发布后发现上下标给我全滤了?,我调整一下,过会儿再看】
硬核程度:☆☆☆☆☆
涉及领域:计算理论
大标题:三种函数外加三种操作怎样解决所有可计算问题?为什么偏递归函数可以制造无限循环?
可能是全网最不报菜名、最不装比的解释。
以下开始:
首先,什么是可计算?
可计算就是指,有一个算法,我们把它交付给计算机后,计算机可以像执行一个函数一样,接受我们给它的输入,然后返回输出,这个输出就是我们想要的答案。
为了方便描述,先行约定一下数学符号。
假设我们有一个乘法器,叫做mult,它可以接受一对整数作为输入,把它们相乘后输出一个整数。
比如,输入(3,4)输出12
输入(6,2)输出12
输入(0,6)输出0
这时,我们把这些输入数对叫做domain,输出的一个数叫做codomain。如果我们用Z来代表全体整数集,那么这个平平无奇的乘法器就可以用数学符号表示为:
mult:Z^2→Z
中间的这个→表示这个mult是一个totalfunction,也许可以称作“全函数”吧,意思是每一个domain里的输入,都能对应一个codomain里的输出。
与全函数相对应的是,是“偏函数”。对于偏函数,对于有些输入,它并不能给出输出。比如一个除法器,当我们给它(6,0)时,它输出不了任何东西。这个除法器可以表示为:
div:Z^2—Z
这里的单横线代表这是一个偏函数(其实应该用半箭头表示,但在这里打不出来)
好了,定义好符号之后,就可以清爽地描述我们的三种基本函数:后继函数、零函数、投影函数。
后继函数:succ:N→N,succ(x)=x+1,N代表自然数集。我们给它2,它输出3;给它3它输出4。总之就是往上+1。
零函数:zero:Nn→N,zero=0。不管给它什么,它都输出0。
投影函数:projn:Nn→N,projin(x1,。。。,xn)=xi。它接受长度为n的输入,输出第i个自然数。比如,proj22(1,3)=3。
好了,盖大楼的砖块一共就这么三种,接下来把它们组合在一起就行了。
我们定义一个叫“组合”的函数f,它的功能是把n个函数组合在一起:
f:Nn—N
具体的,如果每一个被组合的函数g都可以接受同一组参数(x1,。。。,xm),那么组合n个g函数的操作可以被表示为:
f·[g1,。。。,gn]:Nm—N
展开为:
f·[g1,。。。,gn](x1,。。。,xm)=f(g1(x1,。。。,xm),。。。,gn(x1,。。。,xm))
举个栗子:
我们构造一个函数one,one(x)=1,即:不论给它什么输入,它都输出为1,那么:
one(x)=succ(0)=succ(zero(x))
即:succ·[zero]=one
验证一下:
succ·[zero](x)=succ(zero(x))=succ(0)=1